(1)作FG∥BC交CD于G,连接EG,则
= BF FA
,CG GD
= PE ED
= λ,∴BF FA
=PE ED
,CG GD
∴PC∥EG.又FG∥BC,BC∩PC=C,FG∩GE=G,∴平面PBC∥平面EFG.又EF不在平面PBC内,
∴EF∥平面PBC.
(2)当λ=1时,DF⊥平面PAC.
证明如下:∵λ=1,则F为AB的中点,又AB=
AD,AF=
2
AB,1 2
∴在 Rt△FAD 与 Rt△ACD中,tan∠AFD=
=AD AF
=AD
AD
2
2
,tan∠CAD=
2
=CD AD
=
AD
2
AD
,
2
∴∠AFD=∠CAD,∴AC⊥DF,又PA⊥平面ABCD,DF?平面ABCD,
∴PA⊥DF,∴DF⊥平面PAC.