证明:(1)∵
=kn+1,a1=1an+1 an
故
=a2=k+1a2 a1
又因为a1=1,an+1an-1=ana n-1+an2(n≥2)
则a3a1=a1a2+a22,即
=a2+1a3 a2
∵
=2k+1a3 a2
∴a2=2k
∴k+1=2k
∴k=1.….(3分)
(2)∵
=n+1an+1 an
∴an=
?an an?1
…an?1 an?2
?a1=n(n-1)(n-2)…2?1=n!….(6分)a2 a1
(3)因为
=nxn?1,设其前n项和为 Sn,
anxn?1
(n?1)!
当x=1时,Sn=
,…(8分)n(n+1) 2
当x≠1时,Sn=1+2x+3x2+…+nxn?1…(1)
xSn=x+2x2+3x3+…+(n?1)xn?1+nxn…(2)
由(1)-(2)得:(1?x)Sn=1+x+x2+…+xn?1?nxn=
?nxn1?xn
1?x
∴