已知数列{an}中,a1=1,an+1an-1=ana n-1+an2(n∈N,n≥2),且an+1an=kn+1.(1)求证:k=1;(2)求数

2025-05-11 06:52:46
推荐回答(1个)
回答1:

证明:(1)∵

an+1
an
=kn+1,a1=1
a2
a1
a2=k+1

又因为a1=1,an+1an-1=ana n-1+an2(n≥2)
a3a1a1a2+a22,即
a3
a2
a2+1

a3
a2
=2k+1

∴a2=2k
∴k+1=2k
∴k=1.….(3分)
(2)∵
an+1
an
=n+1
∴an=
an
an?1
?
an?1
an?2
a2
a1
?a1
=n(n-1)(n-2)…2?1=n!….(6分)
(3)因为
anxn?1
(n?1)!
=nxn?1
,设其前n项和为 Sn
当x=1时,Sn
n(n+1)
2
,…(8分)
当x≠1时,Sn=1+2x+3x2+…+nxn?1…(1)
xSn=x+2x2+3x3+…+(n?1)xn?1+nxn…(2)
由(1)-(2)得:(1?x)Sn=1+x+x2+…+xn?1?nxn
1?xn
1?x
?nxn