∵AD∥BC,∠ABC=90°
∴∠BAD=90°,
又∵AB=BC,
∴∠BAC=45°,
∴∠CAD=∠BAD-∠BAC=90°-45°=45°,
∴∠BAC=∠CAD,
∴AH⊥ED,
即AC⊥ED,故①正确;
∵△CHE为直角三角形,且∠HEC=60°
∴EC=2EH
∵∠ECB=15°,
∴EC≠4EB,
∴EH≠2EB;故②错误.
∵由证①中已知,∠BAC=∠CAD,
在△ACD和△ACE中,
,
AE=AD ∠BAC=∠CAD AC=AC
∴△ACD≌△ACE(SAS),
∴CD=CE,
∵∠BCE=15°,
∴∠BEC=90°-∠BCE=90°-15°=75°,
∴∠CED=180°-∠BEC-∠AED=180°-75°-45°=60°,
∴△CDE为等边三角形,
∴∠DCH=30°,
∴CD=2DH,故③正确;
过H作HM⊥AB于M,
∴HM∥BC,
∴△AMH∽△ABC,
∴
=MH BC
,AH AC
∵∠DAC=∠ADH=45°,
∴DH=AH,
∴
=MH BC
,DH AC
∵△BEH和△CBE有公共底BE,
∴
=S△BEH S△BEC
=MH BC
,故④正确,DH AC
故答案为:①③④.
给你分享了,看到了吧,cmбē.C⊙㎡下面一点就是哦