解:(I)证明:∵A1D⊥平面ABC,∴平面AA1C1C⊥平面ABC,
又∠ACB=90°,∴BC⊥AC,∴BC⊥平面AA1C1C,∴BC⊥AC1,
∵A1B⊥AC1,∴AC1⊥平面A1BC,
∴AC1⊥A1C.
(II)∵AA1C1C是平行四边形,由(I)知AC1⊥A1C,
∴四边形AA1C1C是菱形,∴AA1=AC=2,
∵A1D⊥平面ABC,∴A1D⊥AC,
∴点D为AC的中点,∴AD=1,A1D=
,
3
∴VC1?ABC=VA1?ABC=
×1 3
×AC×BC×A1D=1 2
.2
3
3
.