圆里面一个正方形,正方形的面积怎么求

2025-05-10 11:11:26
推荐回答(4个)
回答1:

圆里面的最大正方形才能求出面积,即正方形的顶点都在圆上。顶点在圆内的正方形,无法计算面积。

圆内最大的正方形,顶点必然是在圆上。因此,正方形的对角线等于圆的直径,设圆的直径是D,则由勾股定理可得出正方形的边长是√(D²/2),沈阳正方形的面积S=√(D²/2)*√(D²/2)=D²/2。

扩展资料:

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a²+b²=c² 。

勾股定理的意义:

1、勾股定理的证明是论证几何的发端;

2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理; 

3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用.

参考资料来源:百度百科-勾股定理

回答2:

解:圆里面有一个最大正方形,这个正方形的对角线是圆的直径
须知:对角线互相垂直的四边形的面积=对角线乘积的一半
那么正方形的面积=d*d*1/2=1/2*d^2

回答3:

正方形的面积是 2R²

回答4:

设圆的半径为a,圆内为正方形则圆心到正方形四个点的半径所成的角为90°,根据勾股定理可以得到,正方形的边长为根号2a,所以面积为2a*a