(2013?和平区二模)如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面节ABCAA1=A1C=AC=2,AB=BC,且AB⊥BC,O

2025-05-10 17:16:54
推荐回答(1个)
回答1:

解答:(Ⅰ)证明:因为A1A=A1C,且O为AC的中点,
所以A1O⊥AC.
又由题意可知,平面AA1C1C⊥平面ABC,交线为AC,且A1O?平面AA1C1C,
所以A1O⊥平面ABC;
(Ⅱ)证明:以O为原点,OA,OB,OA1所在直线分别为x,y,z轴建立空间直角坐标系.
由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴OB=

1
2
AC=1,
所以得:O(0,0,0),A(1,0,0),A1(0,0,
3
),C1(-2,0,
3
),E(-1,
1
2
3
2

则有:
AA1
=(?1,0,
3
),
AB
=(?1,1,0),
OE
=(-1,
1
2
3
2

设平面A1AB的法向量为
n
=(x0,y0,z0),则由
n
?
AA1
=0
n
?
AB
=0
,可得
?x0+
3
z0=0
?x0+y0=0

故可取
n
=(
3
3
,1)

OE
?
n
=0

∵OE?平面A1AB
∴OE∥平面A1AB;
(III)解:∵C(-1,0,0),∴
A1C
=(-1,0,-