解答:(Ⅰ)证明:因为A1A=A1C,且O为AC的中点,
所以A1O⊥AC.
又由题意可知,平面AA1C1C⊥平面ABC,交线为AC,且A1O?平面AA1C1C,
所以A1O⊥平面ABC;
(Ⅱ)证明:以O为原点,OA,OB,OA1所在直线分别为x,y,z轴建立空间直角坐标系.
由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴OB=
AC=1,1 2
所以得:O(0,0,0),A(1,0,0),A1(0,0,
),C1(-2,0,
3
),E(-1,
3
,1 2
)
3
2
则有:
=(?1,0,AA1
),
3
=(?1,1,0),AB
=(-1,OE
,1 2
)
3
2
设平面A1AB的法向量为
=(x0,y0,z0),则由n
,可得
?n
=0AA1
?n
=0AB
?x0+
z0=0
3
?x0+y0=0
故可取
=(n
,
3
,1)
3
∴
?OE
=0n
∵OE?平面A1AB
∴OE∥平面A1AB;
(III)解:∵C(-1,0,0),∴
=(-1,0,-
A1C