已知两个圆x2+y2-10x-10y=0;x2+y2+6x-2y-40=0求1.他们的公共线所在的直线的方程2.公共弦长

2025-05-11 11:55:14
推荐回答(2个)
回答1:

let A(x1,y1),B(x2,y2) be the intersecion points
x^2+y^2-10x-10y=0 (1)
x^2+y^2+6x-2y-40=0 (2)
(2)-(1)
16x+8y-40=0
2x+y-5=0 (3)
sub (3) into (1)
x^2+(5-2x)^2-10x-10(5-2x)=0
5x^2-10x -25=0
x^2-2x -5 =0
x1+x2 = 2
x1x2= -5
Similary
sub(3) into (1)
[(5-y)/2]^2+y^2-10[(5-y)/2] -10y =0
(5-y)^2+4y^2-20(5-y) -40y =0

5y^2-30y-75=0
y^2-6y-15=0
y1+y2 = 6
y1y2 = -15
(弦长)^2 = (y1-y2)^2+(x1-x2)^2
=(y1+y2)^2+(x1+x2)^2-4y1y2-4x1x2

=36+4+20+60
=120
弦长 = √120 = 2√30

回答2:

解:(1)、公共弦长方程就是两个圆的方程相减,即2x+y=5
(2)x^2+y^2-10x-10y=0,即(x-5)^2+(y-5)^2=50
圆心为(5,5),半径为5,圆心到直线的距离为|2*5+5-5|/√5=2√5
由勾股定理得√{(√50)^2-(2√5)^2}=√30
所以公共弦长为2√30
不懂得可以问我,很乐意帮你解答