∵侧棱PA⊥底面ABCD,
∴PA是四面体P-BCE的高,
∵底面ABCD是边长为2的菱形,∠BAD=60°,
∴AB=BC=2,∠EBC=120°,
∵E为AB的中点,
∴BE=1,
∴三角形BCE的面积S=
×BE?BC?sin120°=1 2
×1×2×1 2
=
3
2
,
3
2
∴四面体P-BCE的体积为
?S△BCE?PA=1 3
×1 3
×2=
3
2
,
3
3
故答案为:
.
3
3