f(x)=2sinωxcosωx-2√3cos^2ωx+1+√3
=sin2ωx-√3cos2ωx+1
=2sin(2ωx-π/3)+1
因为f(x)的最小正周期是π,所以2π/2ω=ω,即ω=1,
f(x)=2sin(2x-π/3)+1。
当2x-π/3=π/2+2kπ,k∈Z时,sin(2x-π/3)=1最大,
故当x=5π/12+kπ,k∈Z时,f(x)取得最大值3.
简单的说一下:
1、2sinωxcosωx可以看成sin2ωx
2、再看后面的2√3cos^2ωx,利用降幂公式,表示成cos2ωx的式子。
3、然后再利用sinx和cosx之间的公式,用一个表示另外一个,比如用sinx表示cosx,只不过要注 意此时不是X,而是2ωx。
4、现在变成单变量的式子,解方程就行了。
解法不唯一,过程大致就是这样,楼主你还是自己算一下吧。