你好!
∫ <0,π> xsinx / (1+cos²x) dx
= ∫<0,π> - x d arctan(cosx)
= [- x arctan(cosx)]<0,π> + ∫<0,π>arctan(cosx) dx
= π²/4 + ∫<0,π>arctan(cosx) dx
令 t=cosx ,x=arccost
∫<0,π>arctan(cosx) dx
= ∫ <1,-1> arctant / -√(1-t²) dt
奇函数,积分区间对称,其值为0
故原积分= π²/4
另法:http://zhidao.baidu.com/question/177015643.html
可以用分部积分法算,不过用换元法计算更快一些。
其实这个定积分改成不定积分也是可以算出来的,网上有些说这个是超越积分的说法真的是胡扯!!
希望对你有所帮助
如有问题,可以追问。
谢谢采纳