解:令x=0得, 0*f(1)=1*f(0), 即f(0)=0 再令x=-1/2得,(-1/2)*f(1/2)=(1/2)*f(-1/2) ,即f(1/2)=0 再令x=1/2得,(1/2)*f(3/2)=(3/2)*f(1/2) ,即f(3/2)=0 再令x=3/2得,(3/2)*f(5/2)=(5/2)*f(3/2) ,即f(5/2)=0所以,f(f(5/2))=f(0)=0