解一道高数问题

-d[M]/dt=A[C][M]^2 当t=0且[M]=[M]0时 积分结果为[M]=[M]0/(1+A[M]0[C]t)求过程
2025-05-10 05:36:55
推荐回答(1个)
回答1:

解:应用“二重积分中值定理”求解。
∵若f(x,y)在有界闭区域D上连续,则存在(ξ,η)∈D,使得∫∫Df(x,y)dδ=f(ξ,η)S(D),其中,SD是积分区域D的面积,
而,题中S(D)=πR²,R→0时,(ξ,η)→(0,0)。又,f(x,y)在x+y≤1内连续,∴(ξ,η)→(0,0)时,f(x,y)=f(0,0)。
∴原式=lim(R→0)πR²f(ξ,η)/R²=lim((ξ,η)→(0,0))πf(ξ,η)=πf(0,0)。
供参考。