(2007?肇庆二模)如图,已知四棱锥P-ABCD,底面是边长为2的正方形,侧棱PA⊥底面ABCD,且PA=2,E为AB的

2025-05-10 17:23:15
推荐回答(1个)
回答1:

解:(Ⅰ)取PC、PD的中点F、G,连接EF、FG、AG.
∵PA⊥面ABCD,CD?面ACBD,
∴PA⊥CD,
∵AD⊥CD,PA∩AD=A,∴CD⊥面PAD,
又∵AG?面PAD,∴CD⊥AG.(2分)
∵AG是等腰Rt△PAD斜边PD上的中线,
∴AG⊥PD,(3分)
∴结合 PD∩AD=D,可得AG⊥面PCD.(4分)
∵FG是△PCD的中位线,
∴FG∥CD且FG=

1
2
CD,
又∵平行四边形ABCD中,AE∥CD且AE=
1
2
CD,
∴FG
AE,即四边形AEFG为平行四边.
∴EF∥AG,(6分)
∴EF⊥面PCD,(7分)
又∵EF?面PEC,∴面PEC⊥面PCD,
即二面角E-PC-D为直二面角.(8分)
(Ⅱ)如图,在RT△PCD中DH⊥PD,垂足为H.
∵面PEC⊥面PCD,且DH垂直于它们的交线,
∴DH⊥面PCE,即DH的长度为点D到面PEC的距离.(10分)
在RT△PCD中,CD=2,PD=2
2
,PC=2
3

DH=
CD×PD
PC
2×2
2
2
3
2
6
3

即点D到面PEC的距离
2
6
3
.(12分)