解:原式=∫<-1,1>[1/(1+x^2)]dx+∫<-1,1>[sinx/(1+x^2)]dx
=∫<-1,1>[1/(1+x^2)]dx
(∵sinx/(1+x^2)是奇函数,∴∫<-1,1>[sinx/(1+x^2)]dx=0)
=arctan(1)-arctan(-1)
=π/4-(-π/4)
=π/2;
解:原式=(π/2)sin(π/2)-∫<0,π/2>sinxdx (应用分部积分法)
=π/2+cos(π/2)-cos(0)
=π/2-1;
3. 解:原式=∫<0,+∞>d(1+x^2)/(1+x^2)^2
=1/(1+0^2)-1/(1+(+∞)^2)
=1;
4. 解:原式=∫<0,1>d(√x)
=√1-√0
=1。