(1)解:∵a3与a5的等比中项为2,∴a3a5=4,
又∵a3+a5=5,q∈(0,1),
∴a3=4,a5=1,解得q=
,1 2
∴an=25-n;
(2)证明:bn=
=1 (4?log2a2n)(5?log2a2n+1)
=1 (2n?1)(2n+1)
(1 2
?1 2n?1
)1 2n+1
∴Sn=
(1-1 2
+1 3
-1 3
+…+1 5
?1 2n?1
)=1 2n+1
(1-1 2
)<1 2n+1
1 2
即Sn≤
成立1 2