(1)∵点(n,
)(n∈N*)均在函数y=Sn n
x+1 2
的图象上,1 2
∴
=Sn n
n+1 2
,1 2
∴Sn=
n2+1 2
n,1 2
∴a1=S1=
+1 2
=1,1 2
当n≥2时,an=Sn-Sn-1=(
n2?1 2
n)-[1 2
(n?1)2+1 2
(n?1)]=n,1 2
当n=1时,a1=1满足上式,
∴an=n.
(2)∵an=n,
∴bn=
=1
anan+1
=1 n(n+1)
?1 n
,1 n+1
Tn=1-
+1 2
?1 2
+…+1 3
?1 n
1 n+1
=1-
1 n+1
=
.n n+1
即数列{bn}的前n项和Tn=
.n n+1