(1)甲往返一次的时间是:+=13.5(小时),
乙往返一次的时间是:+=7.5(小时);
13.5和7.5的最小公倍数为67.5,所以在甲乙出发后的67.5a(a=1,2,…)小时,它们又同时回到A港.
(2)设甲乙能同时到达B港,此时甲乙各完成了m,n(m,n为大于0的自然数)次往返,则有:
+13.5m=+7.5n,
整理后得:9m+1=5n,当m的个数是6或1时,有满足上式的自然数n,所以在甲、乙出发后的:
+13.5×(1+5b)=18+67.5b(b=1,2,…)小时,它们同时到达B港.
(3)设甲、乙能同时到达大桥,且分别完成了m,n次往返(m,n为不为零的自然数).
①若此时甲乙向下游行驶,则:+13.5m=+7.5n.
整理后得:135m+12.5=75n.没有满足上式的自然数m,n.
②若此时甲乙向上游行驶,则:++13.5m=++7.5n.
整理后得:135m+22.5=75n.没有满足上式的自然数m,n.
③若此时甲向上游行驶,乙向下游行驶,则:++13.5m=+7.5n.
整理后得:27m+7=15n,没有满足上式的自然数m,n.
④若此时甲向下游行驶,乙向上游行驶则:+13.5m=++7.5n.
整理后得:9m=5n,当m的个数是0或5时,有满足上式的自然数n.
所以,在甲、乙出发后的:+13.5×5c=3.75+67.5c(c=1,2,…)小时,
它们能同时到达大桥.