已知数列{log2(an-1)}(n∈N*)为等差数列,a1=3,a3=9,(1)求数列{an}的通项公式.(2)求和Sn=1a2?

2025-05-11 10:21:50
推荐回答(1个)
回答1:

(1)∵数列{log2(an-1)}(n∈N*)为等差数列,a1=3,a3=9,
∴log2(a1-1)=log22=1,
log2(a3-1)=log28=3,
∴{log2(an-1)}是首项为1,公差为1的等差数列,
∴log2(an-1)=1+n-1=n,
an?1=2n
an2n+1
(2)∵an2n+1

1
an+1?an
=
1
2n+1?2n
=
1
2n

∴Sn=
1
a2?a1
+
1
a3?a2
+…+
1
an+1?an

=
1
2
+
1
22
+…+
1
2n

=
1
2
(1?
1
2n
)
1?
1
2

=1-
1
2n