(1)将A(1,3),B(0,1),代入y=-
x2+bx+c,1 2
解得b=
,c=1.5 2
∴抛物线的解析式为y=-
x2+1 2
x+1.5 2
∴顶点坐标为(
,5 2
).33 8
(2)①由对称性得C(4,3).
∴S△ABC=
|3-1|?|4-1|=3.1 2
②将直线AC与y轴交点记作D,
∵
=AD BD
=BD CD
,∠CDB为公共角,1 2
∴△ABD∽△BCD.
∴∠ABD=∠BCD.
1°当∠PAB=∠ABC时,
=PB AC
,AB BC
∵BC=
=2
(0-4)2+(1-3)2
,
5
AB=
=
(0-1)2+(1-3)2
,AC=3
5
∴PB=
,3 2
∴P1(0,
).5 2
2°当∠PAB=∠BAC时,
=PB BC
,AB AC
∴
PB 2