如图,四边形ABCD内接于以BC为直径的圆,圆心为O,且AB=AD,延长CB、DA交于P,过C点作PD的垂线交PD的延长

2025-05-10 06:37:36
推荐回答(1个)
回答1:

(1)证明:连接BD,交OA于点F.
∵BC是⊙O的直径,
∴∠BDC=90°,即CD⊥BD,
∵AB=AD,

AB
=
AD

∴OA⊥BD,
∴OA∥CD;

(2)解:设⊙O的半径为r,
∵PB=OB,
∴PB=OB=OC=OA=r,
∵OA∥CD,
∴△OAP∽△CDP,
OP
PC
=
OA
CD
2r
3r
=
r
CD
,解得CD=
3r
2

BC
CD
=
2r
3r
2
=
4
3


(3)解:∵OF∥CD,
OF
DC
=
BO
BC
=
1
2

∴OF=9,AF=3;
∵BD=
BC2?DC2
=6
7

∴DF=
1
2
BD=3
7

∴AD=